Topic: Lanthanides Course: DSE-1A Semester-V Department of Chemistry Polba Mahavidyalaya

Applications:

Discovery:

Ytterby, 30 km from Stockholm (1787)

Source:

- The lanthanoid elements are not particularly rare. Apart from the unstable Pm.
- Minerals: monazite (mixed La, Th, Ln phosphates) widely distributed, concentrated in sand & river beds.
- Bastnaesite (La, Ln fluoro-carbonate $M^{III}CO_3F$) a vast deposit in Sierra Nevada, USA. Gadolinite ($Ln_2M_3Si_2O_{10}$), a mineral of Gadolinium.

Image source: Wikipedia

- ➤ The lanthanoids are part of group 3, and are the elements with atomic numbers 57-71 in period 6.
- Electronic configuration: [Xe] 4f¹⁻¹⁴5dⁿ6s^m

Ce: [Xe] 4f¹5d¹6s² Eu: [Xe] 4f⁷ 6s² Yb: [Xe] 4f¹⁴ 6s²

Image source: MERCK website

Symbol	Configuration		
	+2	+3	+4
La		$[Xe]4f^{0}(La^{3+})$	
Ce	$[Xe]4f^2(CeCl_2)$	$[Xe]4f^{1}(Ce^{3+})$	$[Xe]4f^{0}(Ce^{4+})$
Pr		$[Xe]4f^{2}(Pr^{3+})$	$[Xe]4f^{l}(PrO_{2}, Na_{2}PrF_{6})$
Nd	$[Xe]4f^{4}(NdI_{2})$	$[Xe]4f^{3}(Nd^{3+})$	$[Xe]4f^2(Cs_3NdF_7)$
Pm		$[Xe]4f^{4}(Pm^{3+})$	
Sm	$[Xe]4f^{6}(Sm^{2+})$	$[Xe]4f^{5}(Sm^{3+})$	
Eu	$[Xe]4f^{7}(Eu^{2+})$	$[Xe]4f^{6}(Eu^{3+})$	
Gd		$[Xe]4f'(Gd^{3+})$	
Tb		$[Xe]4f^{8}(Tb^{3+})$	$[Xe]4f'(TbO_2, TbF_4)$
Dy		$[Xe]4f^{9}(Dy^{3+})$	[Xe]4f ⁸ (Cs ₃ DyF ₇)
Ho		$[Xe]4f^{10}(Ho^{3+})$	
Er		$[Xe]4f^{11}(Er^{3+})$	
Tm	$[Xe]4f^{13}(TmI_2)$	$[Xe]4f^{12}(Tm^{3+})$	
Yb	$[Xe]4f^{14}(Yb^{2+})$	$[Xe]4f^{13}(Yb^{3+})$	
Lu		$[Xe]4f^{14}(Lu^{3+})$	

It is possible to correlate the stability of various oxidation states of lanthanoids with the electronic configuration.

Lanthanide contraction:

- We move along the lanthanoid series, there is a decrease in atomic as well as ionic radii, called Lanthanide Contraction.
- The shielding effect of the electrons decreases in the order s > p > d > f.
- Relativistic effect has a 10% contribution to lanthanide contraction.

Consequences of Lanthanoide Contraction:

- > The basicity of the hydroxides decreases from La to Lu.
- > Occurrence of yttrium with heavy lanthanoids.
- For the various Ln³⁺ ions, since the charge remains the same and the decrease in size is just marginal, making their separation difficult.
- > The hardness, melting, and boiling points of the elements increase from Ce to Lu.

Lanthanoide coordination complex:

- High coordination number
- > Oxophilic center
- Chelate formation
- Lanthanoid carbonyl complexes are very unstable.¹
- ✤ Is there any possibility of backbonding?

 $Ln + xCO = Ln(CO)_x$

1. a) R. K. Sheline, J. L. Slater, *Angew. Chem., Int. Ed. Engl.* **1975**, *14*, 309; b) W. H. Xu, X. Jin, M. H. Chen, P. Pyykko, M. F. Zhou, J. Li, *Chem. Sci.* **2012**, *3*, 1548; J. Jin, S. Pan, X. Jin, S. Lei, L. Zhao, G. Frenking, M. Zhou, *Chem. Eur. J.* **2019**, *25*, 3229